Whole-exome analysis in Tunisian Imazighen and Arabs shows the impact of demography in functional variation
Henn, B. M. et al. Genomic ancestry of North Africans supports back-to-Africa migrations. PLoS Genet. 8, e1002397 (2012).
Google Scholar
Arauna, L. R. et al. Recent historical migrations have shaped the gene pool of Arabs and Berbers in North Africa. Mol. Biol. Evol. 34, 318–329 (2017).
Google Scholar
Serra-Vidal, G. et al. Heterogeneity in Palaeolithic population continuity and Neolithic expansion in North Africa. Curr. Biol. 29, 1–7 (2019).
Google Scholar
Lucas-Sánchez, M., Serradell, J. M. & Comas, D. Population history of North Africa based on modern and ancient genomes. Hum. Mol. Genet. 00, 1–7 (2020).
Richter, D. et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293–296 (2017).
Google Scholar
Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).
Google Scholar
Newman, J. L. The peopling of Africa: A Geographic Interpretation (Yale University Press, 1995).
Hunt, C. et al. Site formation processes in caves: The Holocene sediments of the Haua Fteah, Cyrenaica, Libya. J. Archaeol. Sci. 37, 1600–1611 (2010).
Google Scholar
Barton, R. N. E. et al. Origins of the Iberomaurusian in NW Africa: New AMS radiocarbon dating of the Middle and Later Stone Age deposits at Taforalt Cave, Morocco. J. Hum. Evol. 65, 266–281 (2013).
Google Scholar
Scerri, E. M. L. The Aterian and its place in the North African Middle Stone Age. Quat. Int. 300, 111–130 (2013).
Google Scholar
Linstädter, J., Medved, I., Solich, M. & Weniger, G. Neolithisation process within the Alboran territory : Models and possible African impact. Quat. Int. 274, 219–232 (2012).
Google Scholar
Plaza, S. et al. Joining the pillars of hercules: mtDNA sequences show multidirectional gene flow in the Western Mediterranean. Ann. Hum. Genet. 67, 312–328 (2003).
Google Scholar
Bosch, E. et al. High-resolution analysis of human Y-chromosome variation shows a sharp discontinuity and limited gene flow between northwestern Africa and the Iberian Peninsula. Am. J. Hum. Genet. 68, 1019–1029 (2001).
Google Scholar
Fregel, R. et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. bioRxiv 191569, (2018).
van de Loosdrecht, M. et al. Pleistocene North African genomes link near Eastern and sub-Saharan African human populations. Science 360, 548–552 (2018).
Google Scholar
McEvedy, C. The Penguin Atlas of African History (Penguin Books, 1995).
Hiernaux, J. The People of Africa (Encore Editions, 1975).
Pellat, C. H., Yver, G., Basset, R. & Galand, L. B. Encyclopaedia of Islam. 2nd edn., (2012).
Ghaki, M. Els Berbers. in Tunísia, terra de cultures. Tunisia, Land of Cultures (ed. IEMed-MuPCVa) 39–42 (2003).
Camps, G. Els Berbers, mite o realitat? in Les Cultures del Magreb 75–96 (Enciclopèdia Catalana, 1994).
Camps, G. Los bereberes: de la orilla del mediterráneo al límite meridional del Sáhara (Icaria, 1998).
Camps, G. Les Berbères: mémoire et identité (Errance, 1995).
Fadhlaoui-Zid, K. et al. Mitochondrial DNA heterogeneity in Tunisian Berbers. Ann. Human Genet. (2004).
Google Scholar
Fadhlaoui-Zid, K., Khodjet-el-khil, H., Mendizabal, I., Benammar-elgaaied, A. & Comas, D. Genetic structure of Tunisian ethnic groups revealed by paternal lineages. Am. J. Phys. Anthropol. 280, 271–280 (2011).
Google Scholar
Ibn-Khaldoun, A. Histoire des Berberes et des dynasties muslmanes de l’Afrique Septentrionale: Traduction de Le Baronde Slane (Paul Geuthner, 1968).
Idaghdour, Y. et al. Geographical genomics of human leukocyte gene expression variation in southern Morocco. Nat. Genet. 42, 62–67 (2010).
Google Scholar
Cherni, L., Goios, A., Yacoubi, B., Benammar, A. & Slama, A. Y-chromosomal STR haplotypes in three ethnic groups and one cosmopolitan population from Tunisia. Forensic Sci. Int. 152, 95–99 (2005).
Google Scholar
Bosch, A. E., Calafell, F., Comas, D. & Mateu, E. Population history of North Africa : Evidence from classical genetic markers. Hum. Biol. 69, 295–311 (1997).
Google Scholar
Idaghdour, Y., Storey, J. D., Jadallah, S. J. & Gibson, G. A genome-wide gene expression signature of environmental geography in leukocytes of Moroccan amazighs. PLoS Genet. 4, e1000052 (2008).
Google Scholar
Morton, N. E., Crow, J. F. & Muller, H. J. An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl. Acad. Sci. 42, 855–863 (1956).
Google Scholar
Crow, J. F. Some possibilities for measuring selection intensities in man. Hum. Biol. 30, 1–13 (1958).
Google Scholar
Kimura, M., Maruyama, T. & Crow, J. F. The mutation load in small populations. Genetics 48, 1303–1312 (1963).
Google Scholar
Muller, H. J. Our load of mutations. Am. J. Hum. Genet. 2, 111–176 (1950).
Google Scholar
Wright, S. The distribution of gene frequencies in populations. Science 85, 504 (1937).
Google Scholar
Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).
Google Scholar
Pedersen, C. E. T. et al. The effect of an extreme and prolonged population bottleneck on patterns of deleterious variation: Insights from the Greenlandic Inuit. Genetics 205, 787–801 (2017).
Google Scholar
Lopez, M. et al. The demographic history and mutational load of African hunter-gatherers and farmers. Nat. Ecol. Evol. 2, 721–730 (2018).
Google Scholar
Henn, B. M. et al. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proc. Natl. Acad. Sci. U. S. A. 113, E440–E449 (2016).
Google Scholar
Simons, Y. B., Turchin, M. C., Pritchard, J. K. & Sella, G. The deleterious mutation load is insensitive to recent population history. Nat. Genet. 46, 220–224 (2014).
Google Scholar
Do, R. et al. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat. Genet. 47, 126–131 (2015).
Google Scholar
Boyko, A. R. et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet. 4, e1000083 (2008).
Google Scholar
Fu, W., Gittelman, R. M., Bamshad, M. J. & Akey, J. M. Characteristics of neutral and deleterious protein-coding variation among individuals and populations. Am. J. Hum. Genet. 95, 421–436 (2014).
Google Scholar
Lohmueller, K. E. The distribution of deleterious genetic variation in human populations. Curr. Opin. Genet. Dev. 29, 139–146 (2014).
Google Scholar
Lohmueller, K. E. et al. Proportionally more deleterious genetic variation in European than in African populations. Nature 451, 994–997 (2008).
Google Scholar
Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).
Google Scholar
Casals, F. et al. Whole-Exome sequencing reveals a rapid change in the frequency of rare functional variants in a founding population of humans. PLoS Genet. 9, e1003815 (2013).
Google Scholar
Nutile, T. et al. Whole-exome sequencing in the isolated populations of Cilento from South Italy. Sci. Rep. 9, 1–13 (2019).
Google Scholar
Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).
Google Scholar
Marth, G. T., Czabarka, E., Murvai, J. & Sherry, S. T. The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations. Genetics 166, 351–372 (2004).
Google Scholar
Adams, A. M. & Hudson, R. R. Maximum-likelihood estimation of demographic parameters using the frequency spectrum of unlinked single-nucleotide polymorphisms. Genetics 168, 1699–1712 (2004).
Google Scholar
Cooper, G. M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913 (2005).
Google Scholar
Davydov, E. V. et al. Identifying a High Fraction of the Human Genome to be under selective constraint using GERP++. PLoS Comput. Biol. 6, e1001025 (2010).
Google Scholar
Henn, B. M., Botigué, L. R., Bustamante, C. D., Clark, A. G. & Gravel, S. Estimating the mutation load in human genomes. Nat. Rev. Genet. 16, 333–343 (2015).
Google Scholar
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
Google Scholar
Szpiech, Z. A. et al. Long runs of homozygosity are enriched for deleterious variation. Am. J. Hum. Genet. 93, 90–102 (2013).
Google Scholar
Font-Porterias, N. et al. The counteracting effects of demography on functional genomic variation: The Roma paradigm. Mol. Biol. Evol. (2021).
Google Scholar
Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).
Google Scholar
Kessler, M. D. et al. Challenges and disparities in the application of personalized genomic medicine to populations with African ancestry. Nat. Commun. 7, 12521 (2016).
Google Scholar
McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, M. Online Mendelian Inheritance in Man, OMIM®. https://omim.org/.
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, 1005–1012 (2018).
Google Scholar
Kamburov, A., Wierling, C., Lehrach, H. & Herwig, R. ConsensusPathDB-a database for integrating human functional interaction networks. Nucleic Acids Res. 37, 623–628 (2008).
Google Scholar
The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 47, D330–D338 (2019).
Google Scholar
Ashburner, M. et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
Google Scholar
Simons, Y. B. & Sella, G. The impact of recent population history on the deleterious mutation load in humans and close evolutionary relatives. Curr. Opin. Genet. Dev. 41, 150–158 (2016).
Google Scholar
Haldane, J. The effect of variation of fitness. Am. Nat. 71, 337–349 (1937).
Google Scholar
Haldane, J. A mathematical theory of natural and artificial selection, part v: Selection and mutation. Math. Proc. Cambridge Philos. Soc. 23, 838–844 (1927).
Google Scholar
Kimura, M. & Crow, J. F. An Introduction to Population Genetics Theory (Harper & Row, 1970).
Google Scholar
Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).
Google Scholar
Kristiansson, K., Naukkarinen, J. & Peltonen, L. Isolated populations and complex disease gene identification. Genome Biol. 9, 1–9 (2008).
Google Scholar
Kurki, M. I. et al. High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms. PLoS Genet. 10, e1004134 (2014).
Google Scholar
Peltonen, L., Palotie, A. & Lange, K. Use of population isolates for mapping complex traits. Nat. Rev. Genet. 1, 182–190 (2000).
Google Scholar
Scott, L. J. et al. A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).
Google Scholar
Kaneva, R. et al. Bipolar disorder in the bulgarian gypsies: Genetic heterogeneity in a young founder population. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 150, 191–201 (2009).
Google Scholar
Zuk, O. et al. Searching for missing heritability: Designing rare variant association studies. Proc. Natl. Acad. Sci. U. S. A. 111, E455–E464 (2014).
Google Scholar
Arauna, L. R., Hellenthal, G. & Comas, D. Dissecting human North African gene-flow into its western coastal surroundings. Proc. R. Soc. B Biol. Sci. 286, 20190471 (2019).
Google Scholar
Botigué, L. R. et al. Gene flow from North Africa contributes to differential human genetic diversity in Southern Europe. Proc. Natl. Acad. Sci. U. S. A. 110, 11791–11796 (2013).
Google Scholar
Gilad, Y. et al. Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nat. Genet. 26, 221–224 (2000).
Google Scholar
Gilad, Y., Man, O., Pääbo, S. & Lancet, D. Human specific loss of olfactory receptor genes. Proc. Natl. Acad. Sci. U. S. A. 100, 3324–3327 (2003).
Google Scholar
Hoover, K. C. et al. Global survey of variation in a human olfactory receptor gene reveals signatures of non-neutral evolution. Chem. Senses 40, 481–488 (2015).
Google Scholar
Menashe, I., Man, O., Lancet, D. & Gilad, Y. Population differences in haplotype structure within a human olfactory receptor gene cluster. Hum. Mol. Genet. 11, 1381–1390 (2002).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Van der Auwera, G. A. et al. From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinforma. (2013).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Google Scholar
McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
Google Scholar
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Google Scholar
Haber, M. et al. Insight into the genomic history of the Near East from whole-genome sequences and genotypes of Yemenis. bioRxiv 749341, (2019).
Zhao, H. et al. CrossMap: A versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).
Google Scholar
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
Google Scholar
Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Google Scholar
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
Google Scholar
Carson, A. R. et al. Effective filtering strategies to improve data quality from population-based whole exome sequencing studies. BMC Nephrol. 15, 1–15 (2014).
Google Scholar
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, 2074–2093 (2006).
Google Scholar
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
Google Scholar
Behr, A. A., Liu, K. Z., Liu-Fang, G., Nakka, P. & Ramachandran, S. pong: fast analysis and visualization of latent clusters in population genetic data. Bioinformatics 32, 2817–2823 (2016).
Google Scholar
Mezzavilla, M. Neon: An R package to estimate human effective population size and divergence time from patterns of linkage disequilibrium between SNPS. J. Comput. Sci. Syst. Biol. 8, 37–44 (2015).
Google Scholar
Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, 1002967 (2012).
Google Scholar
Kousathanas, A., Oliver, F., Halligan, D. L. & Keightley, P. D. Positive and negative selection on noncoding DNA close to protein-coding genes in wild house mice. Mol. Biol. Evol. 28, 1183–1191 (2011).
Google Scholar
Gravel, S. When is selection effective?. Genetics 203, 451–462 (2016).
Google Scholar
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
Google Scholar
Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019).
Google Scholar
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
Google Scholar
Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–W205 (2019).
Google Scholar
Zhang, B., Kirov, S. & Snoddy, J. WebGestalt: An integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–W748 (2005).
Google Scholar
#Wholeexome #analysis #Tunisian #Imazighen #Arabs #shows #impact #demography #functional #variation