أخبار عربية

Whole-exome analysis in Tunisian Imazighen and Arabs shows the impact of demography in functional variation

  • Henn, B. M. et al. Genomic ancestry of North Africans supports back-to-Africa migrations. PLoS Genet. 8, e1002397 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arauna, L. R. et al. Recent historical migrations have shaped the gene pool of Arabs and Berbers in North Africa. Mol. Biol. Evol. 34, 318–329 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Serra-Vidal, G. et al. Heterogeneity in Palaeolithic population continuity and Neolithic expansion in North Africa. Curr. Biol. 29, 1–7 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lucas-Sánchez, M., Serradell, J. M. & Comas, D. Population history of North Africa based on modern and ancient genomes. Hum. Mol. Genet. 00, 1–7 (2020).

    Google Scholar 

  • Richter, D. et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293–296 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Newman, J. L. The peopling of Africa: A Geographic Interpretation (Yale University Press, 1995).

    Google Scholar 

  • Hunt, C. et al. Site formation processes in caves: The Holocene sediments of the Haua Fteah, Cyrenaica, Libya. J. Archaeol. Sci. 37, 1600–1611 (2010).

    Article 

    Google Scholar 

  • Barton, R. N. E. et al. Origins of the Iberomaurusian in NW Africa: New AMS radiocarbon dating of the Middle and Later Stone Age deposits at Taforalt Cave, Morocco. J. Hum. Evol. 65, 266–281 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scerri, E. M. L. The Aterian and its place in the North African Middle Stone Age. Quat. Int. 300, 111–130 (2013).

    Article 

    Google Scholar 

  • Linstädter, J., Medved, I., Solich, M. & Weniger, G. Neolithisation process within the Alboran territory : Models and possible African impact. Quat. Int. 274, 219–232 (2012).

    Article 

    Google Scholar 

  • Plaza, S. et al. Joining the pillars of hercules: mtDNA sequences show multidirectional gene flow in the Western Mediterranean. Ann. Hum. Genet. 67, 312–328 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bosch, E. et al. High-resolution analysis of human Y-chromosome variation shows a sharp discontinuity and limited gene flow between northwestern Africa and the Iberian Peninsula. Am. J. Hum. Genet. 68, 1019–1029 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fregel, R. et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. bioRxiv 191569, (2018).

  • van de Loosdrecht, M. et al. Pleistocene North African genomes link near Eastern and sub-Saharan African human populations. Science 360, 548–552 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • McEvedy, C. The Penguin Atlas of African History (Penguin Books, 1995).

    Google Scholar 

  • Hiernaux, J. The People of Africa (Encore Editions, 1975).

    Google Scholar 

  • Pellat, C. H., Yver, G., Basset, R. & Galand, L. B. Encyclopaedia of Islam. 2nd edn., (2012).

  • Ghaki, M. Els Berbers. in Tunísia, terra de cultures. Tunisia, Land of Cultures (ed. IEMed-MuPCVa) 39–42 (2003).

  • Camps, G. Els Berbers, mite o realitat? in Les Cultures del Magreb 75–96 (Enciclopèdia Catalana, 1994).

  • Camps, G. Los bereberes: de la orilla del mediterráneo al límite meridional del Sáhara (Icaria, 1998).

    Google Scholar 

  • Camps, G. Les Berbères: mémoire et identité (Errance, 1995).

    Google Scholar 

  • Fadhlaoui-Zid, K. et al. Mitochondrial DNA heterogeneity in Tunisian Berbers. Ann. Human Genet. (2004).

    Article 

    Google Scholar 

  • Fadhlaoui-Zid, K., Khodjet-el-khil, H., Mendizabal, I., Benammar-elgaaied, A. & Comas, D. Genetic structure of Tunisian ethnic groups revealed by paternal lineages. Am. J. Phys. Anthropol. 280, 271–280 (2011).

    Article 

    Google Scholar 

  • Ibn-Khaldoun, A. Histoire des Berberes et des dynasties muslmanes de l’Afrique Septentrionale: Traduction de Le Baronde Slane (Paul Geuthner, 1968).

    Google Scholar 

  • Idaghdour, Y. et al. Geographical genomics of human leukocyte gene expression variation in southern Morocco. Nat. Genet. 42, 62–67 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cherni, L., Goios, A., Yacoubi, B., Benammar, A. & Slama, A. Y-chromosomal STR haplotypes in three ethnic groups and one cosmopolitan population from Tunisia. Forensic Sci. Int. 152, 95–99 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bosch, A. E., Calafell, F., Comas, D. & Mateu, E. Population history of North Africa : Evidence from classical genetic markers. Hum. Biol. 69, 295–311 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Idaghdour, Y., Storey, J. D., Jadallah, S. J. & Gibson, G. A genome-wide gene expression signature of environmental geography in leukocytes of Moroccan amazighs. PLoS Genet. 4, e1000052 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Morton, N. E., Crow, J. F. & Muller, H. J. An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl. Acad. Sci. 42, 855–863 (1956).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Crow, J. F. Some possibilities for measuring selection intensities in man. Hum. Biol. 30, 1–13 (1958).

    CAS 
    PubMed 

    Google Scholar 

  • Kimura, M., Maruyama, T. & Crow, J. F. The mutation load in small populations. Genetics 48, 1303–1312 (1963).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Muller, H. J. Our load of mutations. Am. J. Hum. Genet. 2, 111–176 (1950).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright, S. The distribution of gene frequencies in populations. Science 85, 504 (1937).

    ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pedersen, C. E. T. et al. The effect of an extreme and prolonged population bottleneck on patterns of deleterious variation: Insights from the Greenlandic Inuit. Genetics 205, 787–801 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Lopez, M. et al. The demographic history and mutational load of African hunter-gatherers and farmers. Nat. Ecol. Evol. 2, 721–730 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Henn, B. M. et al. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proc. Natl. Acad. Sci. U. S. A. 113, E440–E449 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Simons, Y. B., Turchin, M. C., Pritchard, J. K. & Sella, G. The deleterious mutation load is insensitive to recent population history. Nat. Genet. 46, 220–224 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Do, R. et al. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat. Genet. 47, 126–131 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Boyko, A. R. et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet. 4, e1000083 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Fu, W., Gittelman, R. M., Bamshad, M. J. & Akey, J. M. Characteristics of neutral and deleterious protein-coding variation among individuals and populations. Am. J. Hum. Genet. 95, 421–436 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lohmueller, K. E. The distribution of deleterious genetic variation in human populations. Curr. Opin. Genet. Dev. 29, 139–146 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lohmueller, K. E. et al. Proportionally more deleterious genetic variation in European than in African populations. Nature 451, 994–997 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Casals, F. et al. Whole-Exome sequencing reveals a rapid change in the frequency of rare functional variants in a founding population of humans. PLoS Genet. 9, e1003815 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nutile, T. et al. Whole-exome sequencing in the isolated populations of Cilento from South Italy. Sci. Rep. 9, 1–13 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Marth, G. T., Czabarka, E., Murvai, J. & Sherry, S. T. The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations. Genetics 166, 351–372 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Adams, A. M. & Hudson, R. R. Maximum-likelihood estimation of demographic parameters using the frequency spectrum of unlinked single-nucleotide polymorphisms. Genetics 168, 1699–1712 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cooper, G. M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Davydov, E. V. et al. Identifying a High Fraction of the Human Genome to be under selective constraint using GERP++. PLoS Comput. Biol. 6, e1001025 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Henn, B. M., Botigué, L. R., Bustamante, C. D., Clark, A. G. & Gravel, S. Estimating the mutation load in human genomes. Nat. Rev. Genet. 16, 333–343 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Szpiech, Z. A. et al. Long runs of homozygosity are enriched for deleterious variation. Am. J. Hum. Genet. 93, 90–102 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Font-Porterias, N. et al. The counteracting effects of demography on functional genomic variation: The Roma paradigm. Mol. Biol. Evol. (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kessler, M. D. et al. Challenges and disparities in the application of personalized genomic medicine to populations with African ancestry. Nat. Commun. 7, 12521 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, M. Online Mendelian Inheritance in Man, OMIM®. https://omim.org/.

  • Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, 1005–1012 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kamburov, A., Wierling, C., Lehrach, H. & Herwig, R. ConsensusPathDB-a database for integrating human functional interaction networks. Nucleic Acids Res. 37, 623–628 (2008).

    Article 
    CAS 

    Google Scholar 

  • The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 47, D330–D338 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ashburner, M. et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Simons, Y. B. & Sella, G. The impact of recent population history on the deleterious mutation load in humans and close evolutionary relatives. Curr. Opin. Genet. Dev. 41, 150–158 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haldane, J. The effect of variation of fitness. Am. Nat. 71, 337–349 (1937).

    Article 

    Google Scholar 

  • Haldane, J. A mathematical theory of natural and artificial selection, part v: Selection and mutation. Math. Proc. Cambridge Philos. Soc. 23, 838–844 (1927).

    ADS 
    MATH 
    Article 

    Google Scholar 

  • Kimura, M. & Crow, J. F. An Introduction to Population Genetics Theory (Harper & Row, 1970).

    MATH 

    Google Scholar 

  • Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kristiansson, K., Naukkarinen, J. & Peltonen, L. Isolated populations and complex disease gene identification. Genome Biol. 9, 1–9 (2008).

    Article 
    CAS 

    Google Scholar 

  • Kurki, M. I. et al. High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms. PLoS Genet. 10, e1004134 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Peltonen, L., Palotie, A. & Lange, K. Use of population isolates for mapping complex traits. Nat. Rev. Genet. 1, 182–190 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scott, L. J. et al. A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kaneva, R. et al. Bipolar disorder in the bulgarian gypsies: Genetic heterogeneity in a young founder population. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 150, 191–201 (2009).

    Article 

    Google Scholar 

  • Zuk, O. et al. Searching for missing heritability: Designing rare variant association studies. Proc. Natl. Acad. Sci. U. S. A. 111, E455–E464 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arauna, L. R., Hellenthal, G. & Comas, D. Dissecting human North African gene-flow into its western coastal surroundings. Proc. R. Soc. B Biol. Sci. 286, 20190471 (2019).

    CAS 
    Article 

    Google Scholar 

  • Botigué, L. R. et al. Gene flow from North Africa contributes to differential human genetic diversity in Southern Europe. Proc. Natl. Acad. Sci. U. S. A. 110, 11791–11796 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gilad, Y. et al. Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nat. Genet. 26, 221–224 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gilad, Y., Man, O., Pääbo, S. & Lancet, D. Human specific loss of olfactory receptor genes. Proc. Natl. Acad. Sci. U. S. A. 100, 3324–3327 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hoover, K. C. et al. Global survey of variation in a human olfactory receptor gene reveals signatures of non-neutral evolution. Chem. Senses 40, 481–488 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Menashe, I., Man, O., Lancet, D. & Gilad, Y. Population differences in haplotype structure within a human olfactory receptor gene cluster. Hum. Mol. Genet. 11, 1381–1390 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Van der Auwera, G. A. et al. From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinforma. (2013).

    Article 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    CAS 

    Google Scholar 

  • Haber, M. et al. Insight into the genomic history of the Near East from whole-genome sequences and genotypes of Yemenis. bioRxiv 749341, (2019).

  • Zhao, H. et al. CrossMap: A versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carson, A. R. et al. Effective filtering strategies to improve data quality from population-based whole exome sequencing studies. BMC Nephrol. 15, 1–15 (2014).

    Article 
    CAS 

    Google Scholar 

  • Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, 2074–2093 (2006).

    CAS 
    Article 

    Google Scholar 

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Behr, A. A., Liu, K. Z., Liu-Fang, G., Nakka, P. & Ramachandran, S. pong: fast analysis and visualization of latent clusters in population genetic data. Bioinformatics 32, 2817–2823 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mezzavilla, M. Neon: An R package to estimate human effective population size and divergence time from patterns of linkage disequilibrium between SNPS. J. Comput. Sci. Syst. Biol. 8, 37–44 (2015).

    Article 

    Google Scholar 

  • Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, 1002967 (2012).

    Article 
    CAS 

    Google Scholar 

  • Kousathanas, A., Oliver, F., Halligan, D. L. & Keightley, P. D. Positive and negative selection on noncoding DNA close to protein-coding genes in wild house mice. Mol. Biol. Evol. 28, 1183–1191 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gravel, S. When is selection effective?. Genetics 203, 451–462 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–W205 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, B., Kirov, S. & Snoddy, J. WebGestalt: An integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–W748 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • #Wholeexome #analysis #Tunisian #Imazighen #Arabs #shows #impact #demography #functional #variation

    امين المحمدي

    رئيس الموقع و كاتب اخباري و كل ما هو جديد في العالم العربي و مدون بخبرة 7 سنوات في الكتابة على المواقع و المدونات و متابعة للشان العربي و العالمي من اخبار عربية و عالمية و رياضية.

    اترك تعليقاً

    لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

    زر الذهاب إلى الأعلى